
Central Schemes for the Modified Buckley-Leverett Equation

Ying Wanga,b,∗, Chiu-Yen Kaoa,c,1

aDepartment of Mathematics, The Ohio State University, Columbus, OH 43210
bSchool of Mathematics, University of Minnesota, Minneapolis, MN55455

cDepartment of Mathematics and Computer Science, Claremont Mckenna College, CA 91711

Abstract

In this paper, we extend the second and third order classical central schemes for the hy-
perbolic conservation laws to solve the modified Buckley-Leverett (MBL) equation which
is of pseudo-parabolic type. The MBL equation describes two-phase flow in porous media,
and it differs from the classical Buckley-Leverett (BL) equation by including a balanced
diffusive-dispersive combination. The classical BL equation gives a monotone water satu-
ration profile for any Riemann problem; on the contrast, when the dispersive parameter is
large enough, the MBL equation delivers non-monotone water saturation profiles for certain
Riemann problems as suggested by the experimental observations. Numerical results in this
paper confirm the existence of non-monotone water saturation profiles consisting of constant
states separated by shocks.
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1. Introduction

The classical Buckley-Leverett (BL) equation [1] is a simple model for two-phase fluid flow
in a porous medium. One application is secondary recovery by water-drive in oil reservoir
simulation. In one space dimension the equation has the standard conservation form

ut + (f(u))x = 0 in Q = {(x, t) : x > 0, t > 0}
u(x, 0) = 0 x ∈ (0,∞) (1.1)

u(0, t) = uB t ∈ [0,∞)
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with the flux function f(u) being defined as

f(u) =


0 u < 0,

u2

u2+M(1−u)2
0 ≤ u ≤ 1,

1 u > 1.

(1.2)

In this content, u : Q̄ → [0, 1] denotes the water saturation (e.g. u = 1 means pure water,
and u = 0 means pure oil), uB is a constant which indicates water saturation at x = 0,
and M > 0 is the water/oil viscosity ratio. The classical BL equation (1.1) is a prototype
for conservation laws with convex-concave flux functions. The graph of f(u) and f ′(u) with
M = 2 is given in Figure 1.1.
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Figure 1.1: f(u) and f ′(u) with M = 2.

The classical BL equation (1.1) has been well studied (see [10] for an introduction). Let

α be the solution of f ′(u) = f(u)
u

, i.e.,

α =

√
M

M + 1
. (1.3)

The entropy solution of the classical BL equation can be classified into two categories:

1. If 0 < uB ≤ α, the entropy solution has a single shock at x
t

= f(uB)
uB

.

2. If α < uB < 1, the entropy solution contains a rarefaction between uB and α for
f ′(uB) < x

t
< f ′(α) and a shock at x

t
= f(α)

α
.

These two types of solutions are shown in Figure 1.2 for M = 2. In either case, the entropy
solution of the classical BL equation (1.1) is a non-increasing function of x at any given
time t > 0. However, the experiments of two-phase flow in porous medium reveal complex
infiltration profiles, which may involve overshoot, i.e., profiles may not be monotone [4].
This suggests the need of modification to the classical BL equation (1.1).
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Figure 1.2: The entropy solution of the classical BL equation (M = 2, α =

√
2
3 ≈ 0.8165). (a) 0 < uB =

0.7 ≤ α, the solution consists of one shock at x
t = f(uB)

uB
; (b) α < uB = 0.98 < 1, the solution consists of a

rarefaction between uB and α for f ′(uB) < x
t < f ′(α) and a shock at x

t = f(α)
α .

Hassanizadeh and Gray [5, 6] have included a third order mixed derivatives dispersive
term, which models the dynamic effects in the capillary pressure difference between the
two phases. Following the linearization and rescaling in [14, 15, 16], the modified Buckley-
Leverett equation (MBL) is derived as

∂u

∂t
+
∂f(u)

∂x
= ε

∂2u

∂x2
+ ε2τ

∂3u

∂x2∂t
, (1.4)

where ε is the diffusion coefficient. Van Duijn et al. [15] showed how ε and τ determine
the type of the solution profile. In particular, for certain Riemann problems, the solution
profile of (1.4) is not monotone when τ is larger than the threshold value τ∗, where τ∗ was
numerically determined to be 0.61 [15]. The non-monotonicity of the solution profile is
consistent with the experimental observations [4].

The classical BL equation (1.1) is hyperbolic, and the numerical schemes for hyperbolic
equations have been well developed (e.g. [10, 11, 2, 3, 13, 8] ). The MBL equation (1.4),
however, is pseudo-parabolic. Van Duijn et al. [15] have developed a first order finite
difference scheme to solve the MBL equation (1.4). In this paper, we will illustrate how to
extend the second and third order central schemes [13, 8, 9] to solve (1.4) numerically. The
local discontinuous Galerkin method has been applied to solve equations involving mixed
derivatives uxxt term [18, 19]. To the best knowledge of the authors, the central schemes
have not been applied to solve equations of this kind. The main advantage of the central
schemes is the simplicity. The “direction of the wind” is not required to be identified, and
hence the field-by-field decomposition can be avoided.

Unlike the finite domain of dependence for the classical BL equation (1.1), the domain of
dependence for the MBL equation (1.4) is infinite. This naturally raises the question for the
choice of computational domain. To answer this question, Wang et al [17] studied the MBL
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equation equipped with two types of domains, one is the half line domain x ∈ [0,+∞),
and the other one is finite interval domain x ∈ [x, L]. Wang et al [17] have shown that
the difference between the solutions of these two types of problems decays exponentially
with respect to the length of the interval L for practically interesting initial profiles. This
provides a theoretical justification for the choice of the computational domain. Therefore,
the numerical results in this paper are sought on the finite interval domain x ∈ [0, L] with
sufficiently large L.

The organization of this paper is as follows. In section 2, the second and third order
central schemes will be developed for MBL equation in the finite interval domain. We provide
a detailed derivation on how to extend the central schemes [13, 8] for conservation laws to
solve the MBL equation (1.4). The idea of adopting numerical schemes originally designed for
hyperbolic equations to pseudo-parabolic equations is not restricted to central type schemes
only ([18, 19]). The numerical results in section 3 show that the water saturation profile
strongly depends on the dispersive parameter τ value as studied in [15]. For τ > τ∗, the MBL
equation (1.4) gives non-monotone water saturation profiles for certain Riemann problems
as suggested by experimental observations [4]. Section 4 gives the conclusion of the paper
and the possible future directions.

2. Numerical schemes

In this section, we show how to apply the central schemes [13, 8] originally designed
for hyperbolic conservation laws to numerically solve the MBL equation (1.4), which is of
pseudo-parabolic type. Specifically, we solve the following finite domain initial boundary
value problem

ut + (f(u))x = εuxx + ε2τuxxt x ∈ (0, L), t > 0

u(x, 0) = uBχ{x=0} + 0χ{0<x≤L}

u(0, t) = uB, u(L, t) = 0. (2.1)

We first collect all the terms with time derivative and rewrite MBL equation (1.4) as

(u− ε2τuxx)t + (f(u))x = εuxx. (2.2)

By letting

w = u− ε2τuxx ⇐⇒ u = (I − ε2τ∂xx)−1w, (2.3)

MBL equation (2.2) can be written as

wt + (f(u))x = εuxx. (2.4)

Now, the new form of MBL equation (2.4) can be viewed as a PDE in terms of w, and the
occurrence of u can be recovered by (2.3). Equation (2.4) can be formally viewed as

wt + (f((I − ε2τ∂xx)−1w))x = ε((I − ε2τ∂xx)−1w)xx, (2.5)

which is a balance law in term of w. In this section, we demonstrate how to apply the second
and third order central schemes to solve the MBL equation (2.2).
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2.1. Second-order schemes

In this section, we show how to apply the classical second order central schemes [13]
originally designed for hyperbolic conservation laws to numerically solve the MBL equation
(1.4), which is of pseudo-parabolic type. To solve (2.4), we modify the central scheme given
in [13]. As in [13], at each time level, we first reconstruct a piecewise linear approximation
of the form

Lj(x, t) = wj(t) + (x− xj)
w′j
∆x

, xj− 1
2
≤ x ≤ xj+ 1

2
. (2.6)

Second-order accuracy is guaranteed if the so-called vector of numerical derivative
w′j
∆x

, which
will be given later, satisfies

w′j
∆x

=
∂w(xj, t)

∂x
+O(∆x). (2.7)

We denote the staggered piecewise-constant functions w̄j+ 1
2
(t) as

w̄j+ 1
2
(t) =

1

∆x

∫ xj+1

xj

w(x, t) dx. (2.8)

Evolve the piecewise linear interplant (2.6) by integrating (2.4) over [xj, xj+1]× [t, t+ ∆t]

w̄j+ 1
2
(t+ ∆t) =w̄j+ 1

2
(t)

− 1

∆x

[∫ t+∆t

t

f(u(xj+1, s)) ds−
∫ t+∆t

t

f(u(xj, s)) ds

]
+

ε

∆x

[∫ t+∆t

t

∫ xj+1

xj

∂2u(x, s)

∂x2
dx ds

]
.

(2.9)

We calculate each term on the right hand side of (2.9) below. For w̄j+ 1
2
(t), applying the

definition of Lj(x, t) and Lj+1(x, t) given in (2.6) to (2.8), we have that

w̄j+ 1
2
(t) =

1

∆x

∫ x
j+1

2

xj

Lj(x, t) dx+
1

∆x

∫ xj+1

x
j+1

2

Lj+1(x, t) dx

=
1

2
(wj(t) + wj+1(t)) +

1

8
(w′j − w′j+1).

(2.10)

The middle two integrands can be approximated by the midpoint rule∫ t+∆t

t

f(u(xj, s)) ds = f(u(xj, t+
∆t

2
))∆t+O(∆t3)∫ t+∆t

t

f(u(xj+1, s)) ds = f(u(xj+1, t+
∆t

2
))∆t+O(∆t3)

(2.11)
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if the CFL condition

λ · max
xj≤x≤xj+1

∣∣∣∣∂f(u(w(x, t)))

∂w

∣∣∣∣ < 1

2
, where λ =

∆t

∆x

is met. For MBL equation (2.4), we have that at t > 0,

u− ε2τuxx = w, u(0) = w(0), u(L) = w(L). (2.12)

To solve the boundary value problem (2.12), we let v(x) = (L−x)w(0)+xw(L)
L

, then

u(x) = [(I − ε2τ∂xx)−1w](x) = v(x) +
1

L

∫ L

0

[w(y)− v(y)]K(x, y) dy

where

K(x, y) =
∞∑
k=1

sin(kπx
L

) sin(kπy
L

)

1 + (kπ
L

)2ε2τ
.

Hence the eigenvalues for (I − ε2τ∂xx)−1 are

λk =
1

1 + (kπ
L

)2ε2τ
≤ 1, k = 1, 2, 3 . . .

Therefore, the CFL condition is

∆t

∆x
· max
xj≤x≤xj+1

∣∣∣∣∂f(u(w(x, t)))

∂w

∣∣∣∣ =
∆t

∆x
· max
xj≤x≤xj+1

k=1,2,3...

∣∣∣∣∂f(u(x, t))

∂u

∣∣∣∣ · λk ≤ ∆t

∆x
· 2.2 < 1

2

In the numerical computations in section 3, we chose ∆t
∆x

= 0.1. In (2.11), to estimate
u(·, t+ ∆t

2
)’s, we use Taylor expansion and the conservation law (2.4):

w(xj, t+
∆t

2
) = wj(t) +

∂w

∂t

∆t

2
+O(∆t2)

= wj(t) + (ε
∂2u

∂x2
− ∂f

∂x
)
∆t

2
+O(∆t2)

= wj(t) + (ε∆xD2 uj − f ′j)
λ

2
,

(2.13)

where D is the discrete central difference operator

D2uj =
uj−1 − 2uj + uj+1

∆x2
,

and the second-order accuracy is met if

f ′j
∆x

=
∂f(u(xj, t))

∂x
+O(∆x). (2.14)
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The choices for {w′j} in (2.7) and {f ′j} in (2.14) can be found in [13], and we chose

w′j = MM{∆wj+ 1
2
,∆wj− 1

2
} , f ′j = MM{∆fj+ 1

2
,∆fj− 1

2
} (2.15)

whereMM{x, y} = minmod(x, y) = 1
2
(sgn(x)+sgn(y))·Min(|x|, |y|) and ∆wj+ 1

2
= wj+1−wj.

Notice that (2.15) determines w′j and f ′j values ultimately based on one-sided difference,
which makes the proposed schemes not purely central. However, this choice ensures the
proposed schemes to be non-oscillatory.

Combining (2.9)-(2.11), we obtain

w̄j+ 1
2
(t+ ∆t) =w̄j+ 1

2
(t)

− λ[f(uj+1(t+
∆t

2
)− f(uj(t+

∆t

2
))]

+
ε

∆x

[∫ t+∆t

t

∫ xj+1

xj

∂2u(x, s)

∂x2
dx ds

]
.

(2.16)

Next, we will re-write (2.16) in terms of u. (uxx)j+ 1
2

is approximated as

(uxx)j+ 1
2

=
1

∆x

∫ xj+1

xj

uxx dx =
1

∆x
(ux(xj+1, t)− ux(xj, t)),

and using the cell averages, it becomes

(uxx)j+ 1
2

=
1

∆x

(
ūj+3/2 − ūj+1/2

∆x
− ūj+1/2 − ūj−1/2

∆x

)
=
ūj+3/2 − 2ūj+1/2 + ūj−1/2

(∆x)2

= D2ūj+ 1
2
.

(2.17)

Notice that the linear interpolation (similar to (2.6))

L̃j+ 1
2
(x, t+ ∆t) = uj+ 1

2
(t+ ∆t) + (x− xj+ 1

2
)
u′
j+ 1

2

∆x
for xj ≤ x ≤ xj+1

and the cell average definition (similar to (2.8))

ūj+ 1
2
(t+ ∆t) =

1

∆t

∫ xj+1

xj

u(x, t+ ∆t) dx

ensures that
ūj+ 1

2
(t+ ∆t) = uj+ 1

2
(t+ ∆t),

and the convertion between u and w is done using the following relation

(I − ε2τ D2)u = w. (2.18)
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Hence re-writting (2.16) in terms of u gives the staggered central scheme

(I − ε2τ D2)uj+ 1
2
(t+ ∆t) = (I − ε2τ D2)ūj+ 1

2
(t)

− λ[f(uj+1(t+
∆t

2
)− f(uj(t+

∆t

2
))]

+
ε

∆x

[∫ t+∆t

t

∫ xj+1

xj

∂2u(x, s)

∂x2
dx ds

]
.

(2.19)

We will focus on the last integral in (2.19). There are many ways to numerically calculate
this integral. We will show two ways to do this in the following two subsections, both of
them achieve second order accuracy.

2.1.1. Trapezoid Scheme

In this scheme, we use the notion (2.8) and the trapezoid rule to calculate the integral
numerically as follows:∫ t+∆t

t

∫ xj+1

xj

∂2u(x, s)

∂x2
dx ds = ∆x

∫ t+∆t

t

(uxx)j+ 1
2
(s) ds

=
∆x∆t

2

(
(uxx)j+ 1

2
(t) + (uxx)j+ 1

2
(t+ ∆t))

) (2.20)

with O(∆t3) error. Combining with (2.17) and (2.19), we can get the trapezoid scheme(
I − (ε2τ +

ε∆t

2
)D2

)
uj+ 1

2
(t+ ∆t) =

(
I − (ε2τ − ε∆t

2
)D2

)
ūj+ 1

2
(t)

−λ
[
f(uj+1(t+

∆t

2
))− f(uj(t+

∆t

2
))

]
.

(2.21)

The flow chart of the trapezoid scheme is given in (2.22)

w̄j+ 1
2
(t)

(2.18) // ūj+ 1
2
(t)

(2.21)
++WWWWWWW

uj(t)
(2.18) // wj(t)

(2.10) 44iiiiiii

(2.13)
**UUUUUU uj+ 1

2
(t+ ∆t)

wj(t+ ∆t
2

)
(2.18) // uj(t+ ∆t

2
) (2.21)

33ggggg

(2.22)

2.1.2. Midpoint Scheme

In this scheme, we use the notion (2.8) and the midpoint rule to calculate the integral
numerically as follows:∫ t+∆t

t

∫ xj+1

xj

∂2u(x, s)

∂x2
dx ds = ∆x

∫ t+∆t

t

(uxx)j+ 1
2
(s) ds

= ∆x∆t(uxx)j+ 1
2
(t+

∆t

2
).
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Combining with (2.17) and (2.19), we can get the midpoint scheme

(I − ε2τ D2)uj+ 1
2
(t+ ∆t) =w̄j+ 1

2
(t)

− λ[f(uj+1(t+
∆t

2
)− f(uj(t+

∆t

2
))]

+ ε∆tD2ūj+ 1
2
(t+

∆t

2
).

(2.23)

The flow chart of the midpoint scheme is given in (2.24)

w̄j+ 1
2
(t)

(2.23)

++WWWWWWWWWWWWWWWWWWWWWWWWWWWW

uj(t)
(2.18) // wj(t)

(2.10)
99rrrrrrrrrrr

(2.13) %%LLLLLLLLLLL
w̄j+ 1

2
(t+ ∆t

2
)

(2.18) // ūj+ 1
2
(t+ ∆t

2
)

(2.23)
// uj+ 1

2
(t+ ∆t)

wj(t+ ∆t
2

)

(2.10)

OO

(2.18) // uj(t+ ∆t
2

)

(2.23)

77nnnnnnnnnnnn

(2.24)

2.2. A third order semi-discrete scheme

Similarly, we can extend the third order scheme to solve MBL equation (1.4), however,
it is more involved. But the third order semi-discrete central scheme proposed in [8] can
be extended to solve the MBL equation in a straightforward manner. In order to make the
paper self-contained, we include the formulation below.

dw̄j
dt

= −Hj+1/2(t)−Hj−1/2(t)

∆x
+ εQj(t)

where w̄(x, t) denotes the cell average of w

w̄j(t) =
1

∆x

∫ xj+1/2

xj−1/2

w(x, t) dx,

Hj+1/2(t) is the numerical convection flux and Qj(t) is a high-order approximation to the
diffusion term uxx

Hj+1/2(t) =
f(u+

j+1/2(t)) + f(u−j+1/2(t))

2
− aj+1/2(t)

2

[
w+
j+1/2(t)− w−j+1/2(t)

]
where u−j+1/2(t), u+

j+1/2(t) denote the left and right intermediate values of u(x, tn) at xj+1/2,

and their values are converted from the w−j+1/2(t), w+
j+1/2(t) using (2.3). The way to calculate
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w−j+1/2(t), w+
j+1/2(t) and aj+1/2(t) is

w+
j+1/2(t) = Aj+1 − ∆x

2
Bj+1 +

(∆x)2

8
Cj+1,

w−j+1/2(t) = Aj +
∆x

2
Bj +

(∆x)2

8
Cj,

aj+1/2(t) = max

{
∂f

∂u
(u−j+1/2(t)),

∂f

∂u
(u+

j+1/2(t))

}
,

where

Aj = w̄nj −
W j
C

12
(w̄nj+1 − 2w̄nj + w̄nj−1),

Bj =
1

∆x

[
W j
R(w̄nj+1 − w̄nj ) +W j

C

w̄nj+1 − w̄nj−1

2
+W j

L(w̄nj − w̄nj−1)

]
,

Cj = 2W j
C

w̄nj−1 − 2w̄nj + w̄nj+1

∆x2
,

W j
i =

αji∑
m α

j
m

αji =
ci

(ε0 + ISji )
p
, i,m ∈ {C,R, L}

cL = cR = 1/4, cC = 1/2, ε0 = 10−6, p = 2,

ISjL = (w̄nj − w̄nj−1)2, ISjR = (w̄nj+1 − w̄nj )2,

ISjC =
13

3
(w̄nj+1 − 2w̄nj + w̄nj−1)2 +

1

4
(w̄nj+1 − w̄nj−1)2.

The diffusion uxx is approximated using the following fourth-order central differencing form

Qj(t) =
−ūj−2 + 16ūj−1 − 30ūj + 16ūj+1 − ūj+2

12∆x2
. (2.25)

The boundary conditions (2.1) are extended to the ghost points at the boundaries. The
scheme is semi-discrete in the sense that the discretization is done in space first, and then
the time evolution equation can be solved as a system of ordinary differential equations
using any ODE solver of third order or higher. In this paper, we simply use the standard
fourth order Runge-Kutta methods. Notice that to achieve the third order accuracy, the
linear solver that converts u from w using (2.3) need also to be high order, and (2.25) is
used to discretize uxx in our convertion.

3. Computational results

In this section, we show the numerical solutions to the MBL equation

ut + (f(u))x = εuxx + ε2τuxxt x ∈ (0, L), t > 0

u(x, 0) = uBχ{x=0} + 0χ{0<x≤L}

u(0, t) = uB, u(L, t) = 0.

(3.1)
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To validate the order analysis given in section 2 for various schemes proposed, we first test
the order of our schemes numerically with a smooth initial condition

u0(x) = uBH(x− 5, 5),

where

H(x, ξ) =


1 if x < −ξ
1− 1

2
(1 + x

ξ
+ 1

π
sin(πx

ξ
)) if −ξ ≤ x ≤ ξ

0 if x > ξ

.

The final time T = 1 was employed, so that there was no shock created. ε in the MBL
equation (3.1) is taken to be 1, M is taken to be 2, and the computational interval is
[−10, 20]. The L1, L2, L∞ order tests of the trapezoid scheme and the third order semi-
discrete scheme with different parameter τ values and the initial condition uB are given in
Tables 3.1 and 3.2. Table 3.1 shows that the trapezoid rule achieved second order accuracy
for all the tested cases in L1, L2, L∞ sense. Table 3.2 shows that the semi-discrete scheme
has the order of accuracy greater than 2.3 for all the cases, and exceeds 3 for some cases.
This confirms the accuracy study given in sections 2.1.1 and 2.2 respectively.

We will now use examples to study the solutions to MBL equation (3.1) using the nu-
merical schemes proposed in section 2. We first notice that if we scale t and x as follows

t̃ =
t

ε
, x̃ =

x

ε
,

then MBL (3.1) equation can be written in terms of t̃ and x̃ as follows

ut̃ + (f(u))x̃ = ux̃x̃ + τux̃x̃t̃. (3.2)

The scaled equation (3.2) shows that it is the magnitude of t
ε

and x
ε

that determine the
asymptotic behavior, not t, x, neither ε alone ([15]). In addition, (3.2) also shows that
the dispersive parameter τ denotes the relative importance of the dispersive term uxxt.
The bigger τ is, the more dispersive effect equation (3.1) has. This can be seen from the
computational results to be shown later in this section.

Duijn et al. [15] numerically provided a bifurcation diagram (Figure 3.1) of MBL (3.1)
equation as the dispersive parameter τ and the post-shock value uB of the initial condition
vary. The solution of (3.1) has been proven to display qualitatively different profiles for
parameter values (τ, uB) falling in different regimes of the bifurcation diagram. In particular,
for every fixed τ value, there are two critical uB values, namely, ū and u. From the bifurcation
diagram (Figure 3.1), it is clear that, when τ < τ∗, ū = u = α. For a fixed τ value, the
solution has three different profiles.

(a) If uB ∈ [ū, 1], the solution contains a plateau value uB for 0 ≤ x
t
≤ df

du
(uB), a rarefaction

wave connection uB to ū for df
du

(uB) ≤ x
t
≤ df

du
(ū), another plateau value ū for df

du
(ū) <

x
t
< f(ū)

ū
, and a shock from ū down to 0 at x

t
= f(ū)

ū
(see Figure 3.2(a)).
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60 7.5416e-03 - 2.5388e-03 - 1.5960e-03 -
uB = 0.9 120 1.9684e-03 1.9379 6.7288e-04 1.9157 4.4066e-04 1.8568
τ = 0.2 240 4.9891e-04 1.9802 1.7645e-04 1.9311 1.2529e-04 1.8144

480 1.2589e-04 1.9865 4.5366e-05 1.9596 3.3205e-05 1.9158
60 8.0141e-03 - 2.6069e-03 - 1.4989e-03 -

uB = 0.9 120 2.1502e-03 1.8981 7.0452e-04 1.8876 4.2221e-04 1.8279
τ = 1 240 5.5697e-04 1.9488 1.8259e-04 1.9480 1.1283e-04 1.9038

480 1.4104e-04 1.9815 4.6109e-05 1.9855 2.8719e-05 1.9740
60 1.3102e-02 - 4.1784e-03 - 2.2411e-03 -

uB = 0.9 120 3.6201e-03 1.8557 1.0994e-03 1.9263 6.1060e-04 1.8759
τ = 5 240 9.6737e-04 1.9039 2.8089e-04 1.9686 1.5667e-04 1.9625

480 2.5825e-04 1.9053 7.1250e-05 1.9790 3.9286e-05 1.9956
60 6.4427e-03 - 2.1578e-03 - 1.1682e-03 -

uB = α 120 1.6611e-03 1.9555 5.7775e-04 1.9011 3.6447e-04 1.6804
τ = 0.2 240 4.3643e-04 1.9283 1.5215e-04 1.9250 1.0389e-04 1.8107

480 1.1223e-04 1.9593 3.9170e-05 1.9577 2.7629e-05 1.9109
60 7.5867e-03 - 2.4101e-03 - 1.3364e-03 -

uB = α 120 2.0069e-03 1.9185 6.4998e-04 1.8906 3.7650e-04 1.8277
τ = 1 240 5.1832e-04 1.9531 1.6801e-04 1.9519 1.0062e-04 1.9037

480 1.3136e-04 1.9803 4.2497e-05 1.9831 2.5599e-05 1.9748
60 1.1959e-02 - 3.8026e-03 - 1.9938e-03 -

uB = α 120 3.2940e-03 1.8602 9.9527e-04 1.9338 5.4231e-04 1.8783
τ = 5 240 8.7736e-04 1.9086 2.5358e-04 1.9727 1.3933e-04 1.9606

480 2.3271e-04 1.9146 6.4252e-05 1.9806 3.4967e-05 1.9944
60 5.7714e-03 - 1.9358e-03 - 1.0481e-03 -

uB = 0.75 120 1.5035e-03 1.9406 5.1617e-04 1.9070 2.8061e-04 1.9011
τ = 0.2 240 3.9299e-04 1.9357 1.3616e-04 1.9225 7.9134e-05 1.8262

480 1.0063e-04 1.9655 3.5080e-05 1.9566 2.1035e-05 1.9115
60 7.1823e-03 - 2.2843e-03 - 1.2069e-03 -

uB = 0.75 120 1.8963e-03 1.9213 6.1315e-04 1.8974 3.4013e-03 1.8272
τ = 1 240 4.8284e-04 1.9736 1.5796e-04 1.9567 9.0912e-04 1.9035

480 1.2093e-04 1.9974 3.9783e-05 1.9894 2.3121e-05 1.9753
60 1.1042e-02 - 3.5020e-03 - 1.8299e-03 -

uB = 0.75 120 3.0287e-03 1.8662 9.1181e-04 1.9414 4.8976e-04 1.9016
τ = 5 240 8.0111e-04 1.9186 2.3118e-04 1.9797 1.2593e-04 1.9595

480 2.1076e-04 1.9264 5.8358e-05 1.9860 3.1627e-05 1.9934

Table 3.1: The accuracy test for the trapezoid scheme for the MBL equation (3.1) with ε = 1 and M = 2.

(b) If uB ∈ (u, ū), the solution contains a plateau value uB for 0 ≤ x
t
< f(ū)−f(uB)

ū−uB
, a shock

from uB up to ū at x
t

= f(ū)−f(uB)
ū−uB

, another plateau value ū for f(ū)−f(uB)
ū−uB

< x
t
< f(ū)

ū
,

and a shock from ū down to 0 at x
t

= f(ū)
ū

(see Figure 3.2(b)). The solution may
exhibit a damped oscillation near u = uB.

(c) If uB ∈ (0, u], the solution consists a single shock connecting uB and 0 at x
t

= f(uB)
uB
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120 2.6992e-03 - 1.1300e-03 - 7.2363e-04 -
uB = 0.9 240 4.0403e-04 2.7400 1.7079e-04 2.7260 1.1283e-04 2.6811
τ = 0.2 480 5.7504e-05 2.8127 2.4624e-05 2.7941 1.6242e-05 2.7963

960 8.4934e-06 2.7592 3.0892e-06 2.9948 1.7607e-06 3.2055
120 4.7731e-03 - 2.0192e-03 - 1.7267e-03 -

uB = 0.9 240 8.7205e-04 2.4524 3.6879e-04 2.4529 3.0632e-04 2.4949
τ = 1 480 1.2006e-04 2.8606 5.0480e-05 2.8690 4.1985e-05 2.8671

960 1.5942e-05 2.9129 6.6663e-06 2.9208 5.1464e-06 3.0282
120 3.7573e-03 - 1.2122e-03 - 7.9211e-04 -

uB = 0.9 240 7.4624e-04 2.3320 2.4164e-04 2.3267 1.5061e-04 2.3949
τ = 5 480 1.1994e-04 2.6373 3.8434e-05 2.6524 2.5089e-05 2.5857

960 1.5565e-05 2.9460 4.9190e-06 2.9660 3.1363e-06 2.9999
120 2.1836e-03 - 9.1039e-04 - 5.7219e-04 -

uB = α 240 3.2729e-04 2.7381 1.3760e-04 2.7260 8.9550e-05 2.6757
τ = 0.2 480 4.6856e-05 2.8043 1.9909e-05 2.7890 1.2935e-05 2.7914

960 6.7382e-06 2.7978 2.3182e-06 3.1023 1.4109e-06 3.1965
120 3.9014e-03 - 1.6388e-03 - 1.3873e-03 -

uB = α 240 7.0517e-04 2.4680 2.9669e-04 2.4656 2.4272e-04 2.5149
τ = 1 480 9.6528e-05 2.8690 4.0354e-05 2.8781 3.3125e-05 2.8733

960 1.2890e-05 2.9047 5.3648e-06 2.9111 4.0754e-06 3.0229
120 3.0797e-03 - 9.9202e-04 - 6.4456e-04 -

uB = α 240 6.1133e-04 2.3328 1.9783e-04 2.3261 1.2277e-04 2.3924
τ = 5 480 9.7351e-05 2.6507 3.1222e-05 2.6637 2.0263e-05 2.5990

960 1.2396e-05 2.9733 3.9513e-06 2.9822 2.4962e-06 3.0210
120 1.8244e-03 - 7.5548e-04 - 4.6671e-04 -

uB = 0.75 240 2.7262e-04 2.7425 1.1419e-04 2.7260 7.3299e-05 2.6707
τ = 0.2 480 3.9198e-05 2.7980 1.6562e-05 2.7855 1.0681e-05 2.7788

960 5.4739e-06 2.8401 1.9677e-06 3.0733 1.3232e-06 3.0129
120 3.2727e-03 - 1.3672e-03 - 1.1477e-03 -

uB = 0.75 240 5.8671e-04 2.4798 2.4585e-04 2.4754 1.9866e-04 2.5304
τ = 1 480 7.9974e-05 2.8750 3.3285e-05 2.8848 2.7033e-05 2.8775

960 1.0724e-05 2.8987 4.4466e-06 2.9041 3.3341e-06 3.0193
120 2.5902e-03 - 8.3335e-04 - 5.3882e-04 -

uB = 0.75 240 5.1342e-04 2.3348 1.6611e-04 2.3268 1.0271e-04 2.3913
τ = 5 480 8.1062e-05 2.6630 2.6032e-05 2.6738 1.6813e-05 2.6109

960 1.0173e-05 2.9944 3.2662e-06 2.9946 2.0473e-06 3.0377

Table 3.2: The accuracy test for the third order semi-discrete scheme for the MBL equation (3.1) with ε = 1
and M = 2.

(see Figure 3.2(c)). It may exhibit oscillatory behavior near u = uB.

Notice that when τ > τ∗ and u < uB < ū, the solution profiles ( Figure 3.2(b)) displays
non-monotonicity, which is consistent with the experimental observations ([4]).

In the numerical computation we show below, we will therefore test the accuracy and
capability of central schemes for different parameter values (τ and uB) that fall into various
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Figure 3.1: The bifurcation diagram of the MBL equation (1.4) with the bifurcation parameters (τ, uB).

(a) rarefaction & shock

x

t

u

uB
ū

u
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du
(uB)
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du
( ū)

f ( ū)
ū

(b) non-monontone solution

x

t

u

uB
u

ū

f ( ū) − f (uB)
ū− uB

f ( ū)
ū

(c) single shock

uB

x

t

u
u

f (uB)
uB

Figure 3.2: Given a fixed τ , the three qualitatively different solution profiles due to different values of uB . In
particular, when τ > τ∗ and u < uB < ū, the solution profiles (Figure (b)) displays non-monotonicity, which
is consistent with the experimental observations ([4]). Figures (a), (b) and (c) are demonstrative figures.

regimes of the bifurcation diagram, and therefore display qualitatively different solution
profiles. The numerical experiments were carried out for M = 2, ε = 0.001 and T = 4000×ε,
i.e. T̃ = 4000 to get the asymptotic solution profiles, and ∆x was chosen to be ε

10
and λ = ∆t

∆x

was chosen to be 0.1. The scheme used in the computation is the second order Trapezoid
scheme as shown in section 2.1.1. The Midpoint scheme delivers similar computational
results, hence is omitted here. The solution profiles at T

4
(blue), 2∗T

4
(green), 3∗T

4
(magenta)

and T (black) are chosen to demonstrate the time evolution of the solutions. The red dashed
lines are used to denote the theoretical shock locations and plateau values for comparison
purpose.

We start with τ > 0. Based on the bifurcation diagram (Figure 3.1), we choose three
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representative uB values, i.e. uB = 0.9 > α, uB = α =
√

M
M+1

=
√

2
3

(for M = 2) and

uB = 0.75 < α. For each fixed uB, we choose three representative τ values, i.e. τ = 0.2 <
τ∗ ≈ 0.61, τ = 1 > τ∗ with uB = 0.75 < uτ=1 < uB = α < ū < uB = 0.9, and τ = 5 with
uB = 0.75, α, 0.9 ∈ [uτ=5, ūτ=5]. We first use this 9 pairs of (τ, uB) values given in Table 3.3
to validate the solution profiles with the demonstrative solution profiles given in Figure 3.2.

(τ, uB) Example 4 Example 5 Example 6
Example 1 (0.2, 0.9) (1, 0.9) (5, 0.9)
Example 2 (0.2, α) (1, α) (5, α)
Example 3 (0.2, 0.75) (1, 0.75) (5, 0.75)

Table 3.3: 9 pairs of (τ, uB) values with either fixed τ value or fixed uB value used in Examples 1 – 6.

Example 1 (τ, uB) = (0.2, 0.9), (τ, uB) = (1, 0.9), (τ, uB) = (5, 0.9).
When uB = 0.9 > α is fixed, we increase τ from 0.2 to 1 to 5 (Figures 3.3(a) , 3.3(b) , 3.3(c)),
the dispersive effect starts to dominate the solution profile. When τ = 0.2 (Figure 3.3(a)),
the solution profile is similar to the classical BL equation solution (see Figure 1.2(b)), with a
rarefaction wave for x

t
∈ [f ′(u = 0.9), f ′(u = α) = f ′(u = ūτ=0.2)] and a shock from u = α to

u = 0 at x
t

= f ′(α). This corresponds to Figure 3.2(a) with df
du

(ūτ=0.2 = α) = f(ūτ=0.2)
ūτ=0.2

= f(α)
α

.
When τ = 1 (Figure 3.3(b)), the rarefaction wave is between x

t
∈ [f ′(u = 0.9), f ′(u = ūτ=1)]

and the solution remains at the plateau value u = ūτ=1 for x
t
∈ [f ′(u = ūτ=1), f(ūτ=1)

ūτ=1
]

and the shock occurs at x
t

= f(ūτ=1)
ūτ=1

. This corresponds to Figure 3.2(a) with uB = 0.9 >
ūτ=1 ≈ 0.86. When τ = 5 (Figure 3.3(c)), the solution displays the first shock from u = 0.9

to u = ūτ=5 at x
t

= f(ūτ=5)−f(uB)
ūτ=5−uB

, and then remains at the plateau value u = ūτ=5 for
x
t
∈ [f(ūτ=5)−f(uB)

ūτ=5−uB
,
f(ūτ=5)

ūτ=5
] and the second shocks occurs at x

t
=

f(ūτ=5)

ūτ=5
. This corresponds to

Figure 3.2(b) with uτ=5 ≈ 0.68 < uB = 0.9 < ūτ=5 ≈ 0.98. Notice that as τ increases, the
rarefaction region shrinks and the plateau region enlarges.

Example 2 (τ, uB) = (0.2, α), (τ, uB) = (1, α), (τ, uB) = (5, α).
When uB = α is fixed, we increase τ from 0.2 to 1 to 5 (Figures 3.3(d) , 3.3(e) , 3.3(f)), the
dispersive effect starts to dominate the solution profile. When τ = 0.2, the solution displays
one single shock at x

t
= f(α)

α
. For both τ = 1 and τ = 5, the solution has two shocks,

one at x
t

=
f(ūτ=1(τ=5 respectively))−f(α)

ūτ=1(τ=5 respectively)−α
, and another one at x

t
=

f(ūτ=1(τ=5 respectively))

ūτ=1(τ=5 respectively)
. For both

τ = 1 and τ = 5 (Figures 3.3(e) 3.3(f)), the solutions correspond to Figure 3.2(b), which are
consistent with the experimental observations. Notice that as τ increases from 1 to 5, i.e.,
the dispersive effect increases, the inter-shock interval length increases at every fixed time
(compare Figure 3.3(e) with Figure 3.3(f)). In addition, for fix τ = 1 (τ = 5 respectively),
as time progresses, the inter-shock interval length increases in the linear fashion (see Figure
3.3(e) (Figure 3.3(f) respectively) ).
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Figure 3.3: Numerical solutions to MBL equation with parameter settings fall in different regimes of the
bifurcation diagram (Figure 3.1). The color coding is for different time: 1

4T (blue), 2
4T (green), 3

4T (magenta)

and T (black). The results are discussed in examples 1 – 6. In figures (d) – (f), α =
√

M
M+1 =

√
2
3 for

M = 2.

Example 3 (τ, uB) = (0.2, 0.75), (τ, uB) = (1, 0.75), (τ, uB) = (5, 0.75).
When uB = 0.75 <= α is fixed, we increase τ from 0.2 to 1 to 5 (Figures 3.3(g), 3.3(h),
3.3(i)), the dispersive effects starts to dominate the solution profile in the similar fashion as
uB = 0.9 and uB = α. Notice that when τ = 1, since uB = 0.75 is very close to uτ=1, the

solution displays oscillation at x
t

= f(uB)
uB

(Figure 3.3(h)). If we increase τ further to τ = 5,
the dispersive effect is strong enough to create a plateau value at ū ≈ 0.98 (see Figure 3.3(i)).
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Example 4 (τ, uB) = (0.2, 0.9), (τ, uB) = (0.2, α), (τ, uB) = (0.2, 0.75).
Now, we fix τ = 0.2, decrease uB from 0.9 to α, to 0.75 (Figures 3.3(a), 3.3(d) 3.3(g)). If
uB > α the solution consists a rarefaction wave connecting uB down to α, then a shock
from α to 0, otherwise, the solution consists a single shock from uB down to 0. In all cases,
since τ = 0.2 < τ∗, regardless of the uB value, the solution will not display non-monotone
behavior, due to the lack of dispersive effect.

Example 5 (τ, uB) = (1, 0.9), (τ, uB) = (1, α), (τ, uB) = (1, 0.75).
Now, we fix τ = 1, decrease uB from 0.9 to α, to 0.75 (Figures 3.3(b), 3.3(e), 3.3(h)). If
uB = 0.9 > ūτ=1, the solution consists a rarefaction wave connecting uB and ū, and a shock
connecting ū down to 0 (Figure 3.3(b)). Even if u < uB < ū, because τ = 1 > τ∗, the
solution still has a chance to increase to the plateau value ū as seen in Figure 3.3(e). But, if
uB is too small, for example, uB = 0.75 < u, the solution does not increase to ū any more,
instead, it consists a single shock connecting uB down to 0 (Figure 3.3(h)).

Example 6 (τ, uB) = (5, 0.9), (τ, uB) = (5, α), (τ, uB) = (5, 0.75).
Now, we fix τ = 5, decrease uB from 0.9 to α, to 0.75 (Figures 3.3(c), 3.3(f), 3.3(i)). For all
three uB, they are between uτ=5 and ūτ=5, hence all increase to the plateau value ūτ=5 ≈ 0.98
before dropping to 0. Notice that as uB decreases, the inter-shock interval length decreases
at every fixed time (compare Figures 3.3(c), 3.3(f) and 3.3(i)). This shows that when the
dispersive effect is strong (τ > τ∗), the bigger uB is, the bigger region the solution stays at
the plateau value.

Example 7 (τ, uB) = (0, 0.9), (τ, uB) = (0, α), (τ, uB) = (0, 0.75).
We now show the solution profiles for the extreme τ value, i.e. τ = 0 in Figures 3.4(a)
(uB = 0.9), 3.4(b) (uB = α) and 3.4(c) (uB = 0.75). Notice that these are cases of classical
BL equation with small diffusion εuxx. We compare Figures 3.4(a), 3.4(b) and 3.4(c) with
the solution of the classical BL equation given in Figures 1.2(a) and 1.2(b), it is clear that
they show qualitatively same solution profiles. The difference is that due to the diffusion
term in the MBL equation, as shown in Figure 3.4, the solutions do not have sharp edges
right at the shock, instead, the solutions smear out a little. Notice that this smearing effect
is also partially introduced by the central scheme. It is well known that central scheme is
non-oscillatory, i.e., it generates numerical viscosity. If we compare Figures 3.4(a), 3.4(b)
and 3.4(c) with Figures 3.3(a), 3.3(d) and 3.3(g), there is no visible difference. This shows
that once τ < τ∗, solution profile will stay the same for a fixed uB value.

Example 8 (τ, uB) = (5, 0.99), (τ, uB) = (5, 0.98), (τ, uB) = (5, 0.97).
We also study the solution profiles for uB close to ū. For example, when τ = 5, ū ≈ 0.98,
we hence choose uB = 0.99, uB = 0.98, uB = 0.97 and solutions are shown in Figures 3.5(a),
3.5(b), 3.5(c). If uB = 0.99 > ūτ=5 ≈ 0.98, the solution drops to the plateau value ū, then
drops to 0 (see Figure 3.5(a)). If uB = 0.98 ≈ ūτ=5, the solution remains at plateau value
ūτ=5 and then drop to 0 (see Figure 3.5(b)). If uB = 0.97 < ūτ=5, the solution increases to
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Figure 3.4: The numerical solutions of the MBL equation at T = 1 with τ = 0 and different uB values. The
results are discussed in example 7.

the plateau value ūτ=5 ≈ 0.98, then drops to 0 (see Figure 3.5(c)). In all cases, the transition
from uB to ūτ=5 ≈ 0.98 takes very small space. In the majority space, the solution keeps to
be the plateau value ūτ=5 ≈ 0.98.
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Figure 3.5: Numerical solutions to MBL equation with uB close to ūτ=5 ≈ 0.98. The color coding is for
different time: 1

4T (blue), 2
4T (green), 3

4T (magenta) and T (black). The results are discussed in example 8.

Example 9 (τ, uB) = (5, 0.7), (τ, uB) = (5, 0.69), (τ, uB) = (5, 0.68), (τ, uB) = (5, 0.67),
(τ, uB) = (5, 0.66).
In addition, we study the solution profiles for uB close to u. For example, when τ = 5,
u ≈ 0.68, we hence choose uB = 0.7, uB = 0.69, uB = 0.68, uB = 0.67, uB = 0.66 and
solutions are shown in Figures 3.6(a), 3.6(b), 3.6(c), 3.6(d), 3.6(e). As uB decreases crossing
uτ=5 ≈ 0.68, the solution gradually stops increasing to the plateau value ūτ=5, and the inter-
shock interval length decreases (compare Figures 3.6(a), 3.6(b) and 3.6(c)). The oscillation
in Figures 3.6(d) and 3.6(e) are due to the fact that uB values are too close to uτ=5. This
confirms that even with big dispersive effect (say τ = 5), if uB is too small (e.g. uB < u),
the solution will not exhibit non-monotone behavior.
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0 2 4
0

0.5

1

x

u

(d) (τ, uB) = (5, 0.67)
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Figure 3.6: Numerical solutions to MBL equation with uB close to uτ=5 ≈ 0.68. The color coding is for
different time: 1

4T (blue), 2
4T (green), 3

4T (magenta) and T (black). The results are discussed in example 9.

Example 10 (τ, uB) = (0.2, 0.6), (τ, uB) = (1, 0.6), (τ, uB) = (5, 0.6).
We fix uB to be small, and in this example, we take it to be uB = 0.6. We vary the τ value,
from τ = 0.2 < τ∗ to τ = 1 barely larger than τ∗ to τ = 5 > τ∗. The numerical solutions
are given in Figures 3.7(a), 3.7(b), 3.7(c). As τ increases, the post-shock value remains the
same, but there will be oscillation generated as τ becomes larger than τ∗. Figures 3.7(d),
3.7(e) and 3.7(f) show that as τ increases, the oscillation amplitude increases and oscillates
more rounds. Notice that τ is the dispersive parameter, and this means that even for small
uB value, different dispersive parameter values still give different dispersive effects, although
none can bring the solution to the plateau value ū. Comparing Figures 3.7(d), 3.7(e) and
3.7(f) with Figures 3.7(g), 3.7(h) and 3.7(i), it is clear that the oscillation amplitude remains
steady with respect to time.

Example 11 ε = 0.001, ε = 0.002, ε = 0.003, ε = 0.004, ε = 0.005.
In this example, we will compare the solution profiles for different ε values. Fixing T =
0.5,∆x = 0.0001, λ = ∆t

∆x
= 0.1, we show the numerical results in Figure 3.8 for ε = 0.001

(blue), ε = 0.002 (yellow), ε = 0.003 (magenta), ε = 0.004 (green), and ε = 0.005 (black).
For the purpose of cross reference, we choose the same nine sets of parameter settings as
in examples 1– 6. To assist the observation, the figures in Figure 3.8 are zoomed into the
regions where different ε values introduce different solution profiles. The numerical solutions
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(g) Fig 3.7(a) zoomed in at T
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(h) Fig 3.7(b) zoomed in at T
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Figure 3.7: Numerical solutions to MBL equation with small constant uB = 0.6 and different τ values.
The figures on the second and third rows are the magnified versions of the first row at t = 1

4T and t = T
respectively. The color coding is for different time: 1

4T (blue), 2
4T (green), 3

4T (magenta) and T (black).
The results are discussed in examples 10.

clearly show that as ε increases, the numerical solution is smeared out, and the jump location
becomes less accurate. Notice that τ is responsible for the competition between the diffusion
and dispersion, which in turn determines the plateau values. Hence varying ε value doesn’t
affect the plateau location.
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Figure 3.8: The numerical solutions of MBL equation at T = 0.5 with ε = 0.001 (blue), ε = 0.002 (yellow),
ε = 0.003 (magenta), ε = 0.004 (green), and ε = 0.005 (black). The view windows are zoomed into the
regions where different ε values impose different solution profiles. The results are discussed in example 11.

4. Conclusion

We extended the second and third order classical central schemes originally designed for
the hyperbolic systems to solve the MBL equation, which is of pseudo-parabolic type. The
numerical solutions for qualitatively different parameter values τ and initial conditions uB
show that the jump locations are consistent with the theoretical calculation and the plateau
heights are consistent with the numerically obtained values given in [15]. In particular, when
τ > τ∗, for uB ∈ (u, ū), the numerical solutions give non-monotone water saturation profiles,
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which is consistent with the experimental observations. In addition, the order tests show
that the proposed second and third order central schemes achieved the desired accuracies.

In [16, 14], the two-dimensional space extension of the modified Buckley-Leverett equa-
tion has been derived. One of the future directions is to develop high order numerical
schemes to solve the two-dimensional MBL equation. Central schemes have been used to
solve high dimensional hyperbolic problem and dispersive problem ([7, 12]), which makes it
a good candidate for such a task.

Acknowledgments

CYK would like to thank Prof. L.A. Peletier for introducing MBL equation.

References

[1] Buckley, S., Leverett, M., 1942. Mechanism of fluid displacement in sands. Petroleum Transactions,
AIME 146, 107–116.

[2] Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E., 1998. Advanced numerical approximation of
nonlinear hyperbolic equations. Vol. 1697 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
papers from the C.I.M.E. Summer School held in Cetraro, June 23–28, 1997, Edited by Alfio Quarteroni,
Fondazione C.I.M.E.. [C.I.M.E. Foundation].

[3] Cockburn, B., Karniadakis, G. E., Shu, C.-W. E., 2000. Discontinuous Galerkin Methods: Theory,
Computation and Applications. Lecture Notes in Computational Science and Engineering.

[4] DiCarlo, D. A., Apr. 2004. Experimental measurements of saturation overshoot on infiltration. Water
Resources Research 40, 4215.1 – 4215.9.

[5] Hassanizadeh, S., Gray, W., 1990. Mechanics and thermodynamics of multiphase flow in porous media
including interphase boundaries. Adv. Water Resour. 13, 169–186.

[6] Hassanizadeh, S., Gray, W., 1993. Thermodynamic basis of capillary pressure in porous media. Water
Resour. Res. 29, 3389–3405.

[7] Jiang, G.-S., Tadmor, E., 1998. Nonoscillatory central schemes for multidimensional hyperbolic conser-
vation laws. SIAM J. Sci. Comput. 19 (6), 1892–1917 (electronic).
URL http://dx.doi.org/10.1137/S106482759631041X

[8] Kurganov, A., Levy, D., 2000. A third-order semidiscrete central scheme for conservation laws and
convection-diffusion equations. SIAM J. Sci. Comput. 22 (4), 1461–1488 (electronic).
URL http://dx.doi.org/10.1137/S1064827599360236

[9] Kurganov, A., Lin, C.-T., 2007. On the reduction of numerical dissipation in central-upwind schemes.
Commun. Comput. Phys. 2 (1), 141–163.

[10] LeVeque, R. J., 1992. Numerical methods for conservation laws, 2nd Edition. Lectures in Mathematics
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